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Abstract. A direct evaluation of the lowest-order WKB integral-is carried out for the 
linear plus Coulomb potential V(r )  = pr - ( P / r ) .  The implicit relation for the bound-state 
energies defined by the WKB quantisation condition is expressed in terms of complete 
elliptic integrals. An approximate non-perturbative inversion of this relation provides an 
explicit analytic expression for the energy which reproduces known numerical results quite 
well. A criterion for the applicability of the approximation scheme is given. 

1. Introduction 

In a recent paper (Seetharaman et a1 1982, hereafter referred to as I) we considered 
the direct evaluation of the lowest-order WKB integral for three-dimensional anhar- 
monic oscillators. It was shown that the highly implicit relation for the bound-state 
energies defined by the WKB quantisation condition could be expressed in terms of 
complete elliptic integrals. Further, an approximate non-perturbative inversion of the 
implicit relation was performed and was found to provide explicit analytic expressions 
for the energy in good agreement with known values. 

Motivated by the efficacy of our approximation method in the anharmonic oscillator 
case, in this work we analyse the case of a linear rising potential modified by the 
addition of an attractive Coulomb term. For this potential also the integral in the 
WKB quantisation condition can be expressed in terms of complete elliptic integrals. 
In addition to its intrinsic interest, this linear plus Coulomb potential is also of interest 
in the spectroscopy of charmonium levels (Eichten er a1 1978,1980, Quigg and Rosner 
1979) whose gross features can be well accounted for by interpreting the levels as 
non-relativistic bound states of a heavy quark-antiquark (cC) pair potential. The linear 
part of the interquark potential is taken to represent the confinement of quarks and 
the attractive Coulomb part has its origin in quantum chromodynamics. 

We take the linear plus Coulomb potential in the form V ( r )  = pr  - @ / r )  and, as 
noted earlier, evaluate the corresponding WKB integral directly in terms of complete 
elliptic integrals. To obtain the energies W we develop, along the lines of I, an 
approximation scheme in which the elliptic integrals are expanded about values (of 
their arguments) which depend on both the radial quantum n,  and the angular 
momentum 1. It will be seen that our non-perturbative inversion procedure yields 
explicit expressions for the energy which are quite satisfactory. 

@ 1983 The Institute of Physics 455 
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This paper is organised as follows. In the next section the WKB integral for the 
potential V(r) given above is evaluated, and the correct Coulomb spectrum is shown 
to follow in the limit p + 0. Our inversion procedure is outlined in 0 3 and an analytic 
expression for the energy W obtained from the WKB formula is also given. The results 
are presented and discussed in the final section. 

2. Evaluation of the WKB integral 

We take the Hamiltonian to be 

H = p 2  + p r  - (P/r) CL,PSO (2.1) 

where we have chosen the mass to be and set h = 1 t. The WKB quantisation condition 
for the allowed bound-state energies W is 

(n, +$)T = Iba dr( W -p r  +--7 r r  

(Landau and Lifschitz 1977). Here n, and 1 are non-negative integers. The integration 
is between the two classical turning points r = b and r = a which are (positive) roots 
of the cubic equation 

One root of this equation is real and negative. The other two roots are real and 
positive for physical values of W. (In the case when the other two roots are complex 
conjugates, the WKB method is inapplicable.) We take the roots a,  b and c to satisfy 
a > b > 0 and c < 0. Equation (2.2) can now be re-expressed in terms of a,  b and c as 

(2.4) 

The right-hand side of this equation can be evaluated in terms of complete elliptic 
integrals (Byrd and Friedman 1971). We get 

(n, +&r = { [ i p  - ( L 2 / c )  + i W c K ( k ) + $  W(a  -c)E(k)+L2(c- ‘  - b- l ) I I (a2 ,  k ) } g / J i  

(2.5) 
where K ,  E and II are complete elliptic integrals of the first, second and third kinds, 
respectively, in the notation of Byrd and Friedman (1971) and 

L2 = (1 ++)2 k 2 = ( a  - b ) / ( a  -c) a 2  = c k 2 / b  g = 2 ( a  -c)-”’. (2.6) 

It is easy to see that O <  k 2 <  1 and a 2 < 0 .  Equation (2.5) is an implicit relation for 
the energy W. 

It is known that the lowest-order WKB approximation is exact for the pure Coulomb 
potential. We therefore consider the limit p + O  in (2.5) and verify that the correct 
Coulomb energy spectrum results, thereby checking the correctness of (2.5). In this 
limit, the bound-state energy W is negative and the roots of the cubic equation (2.3) 

t The analysis of this paper can easily be extended to the case p < 0, though this case does not seem to 
have physical interest. 
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are given by 

a + - [p  + (4L2 w +p2)1'2]/2 w 
b+-[p-(4L2W+p2) ' /2] /2W 

with the assumption that 4 L 2 W + p 2 > 0 .  These expressions lead to the following 
limiting forms of k ', a and g : 

k2+(4L2W+P2)1 '2p/W2 

a 2 +  2(4L2 W + p 2 ) ' / 2 / [ - p  + (4L2 W +/32)'/2] g +2(F/-w)1/2.  

Since k 2  + 0 as p + 0 while a2 remains finite, we also have 

K(k)+$x( l+$k2)  E(k)+i r ( l  -:k2) l l (a2,  k ) + r / [ 2 ( 1  - ( Y ~ ) ~ / ~ ]  

(Byrd and Friedman 1971). Incorporating all these into (2.5) and evaluating the limit 
p ' 0 ,  we get 

w = -P2/4(n, + I  + 1)2, (2.7) 

which gives the correct Coulomb energy spectrum for a particle of mass i. Note that 
W satisfies the inequality 4L2 W + p 2  >0, which justifies the assumption made earlier. 

3. Analytic expression for W 

Having expressed the WKB quantisation condition (2.2) in terms of elliptic integrals, 
we now consider the inversion of the resulting relation (2.5) which is an implicit 
function of the energy W. First we simplify matters a little by invoking a scaling of 
the Hamiltonian (2.1) to make the strength of the linear potential unity. Next we 
consider the limit W + CO in (2.5) and obtain the leading term in the dependence of 
W on n,  and 1. Finally we derive an analytic expression for W by improving on the 
above leading term, as was done in I for anharmonic oscillators. 

3.1. Scaling 

With the replacement r + rr (7 constant) in the Hamiltonian (2.1), it is easy to show 
that the energy eigenvalues obey the scaling relation 

(3.1) 
This is also true of the energy W defined by the WKB condition (2.2). We can therefore 
set p = 1 without loss of generality and then need consider only W(1, A )  = W(A) 
where we have defined 

A c ~ - ' / ~ p .  (3.2) 
The new Hamiltonian has the form 

R = p 2  + r - ( A / r ) .  (3.3) 
Henceforth we shall consider this Hamiltonian and its eigenvalues W(A ). 
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3.2. Leading (WKB) approximation to W 

It is not difficult to verify that, as W + 03, the roots a, b and c go as follows (with p = 1): 

a + W  b + L/* c + - L / f i .  
Hence 

2 k2+1-2L/W3I2  a +-1. 

The limiting forms of the elliptic integrals are given by 

K(k)-,ln(4/kf)+a(ln(4/k‘) - l ) k f 2  

E ( k ) +  1 +4(ln(4/k’)-i)kf2 

II(a2,  k ) + i l n ( 4 / k f ) + ~ r  

where k f2  = 1 - k 2  (Byrd and Friedman 1971). Putting these expressions, together with 
the changes p + 1, p + A ,  in (2.5) and retaining only the leading terms, we get 

(n ,  +i)r = $ ~ ~ / ~ [ 1 -  ( 3 ~ ~ / 4  ~ ~ ’ ~ 1 1  
from which it follows that 

w = (:r)2/3(2n, + I + 5)2/3. 

w0 = (&r)2’3(n +32/3, (3.4) 

In the rest of the paper we shall define 2n, + I  = n and call the above leading term WO: 

This expression for WO is in agreement with the known WKB limit for power law 
potentials (Quigg and Rosner 1979). Incidentally, we may note that the corresponding 
expression for WO in the case of Hamiltonian (2.1) will have an extra factor of p2’3. 

3.3. Improved approximation to W 

As in I, the relation (3.4) will be the starting point for our approximation scheme 
from which we obtain an explicit expression for W which is better than that given by 
(3.4) with WO replaced by W. Since WO has no h dependence, we clearly need an 
improvement to it. To this end, we suppose that W can be written as 

w = WO(1 + x )  /XI<< 1 (3.5) 
with WO given by (3.4). We then expand all W-dependent quantities on the RHS of 
(2.5) to order x. Thus we write the roots a, b and c as 

a = a o + a l x  b =bo+ blx c =CO + c1x. (3.6) 

a. = fwO(l +2p cos fqo) 

The explicit expressions for ao ,  a l ,  etc, are easily found. We have 

(3.7) 

(3.8) a l  = + W ~ ( I +  2p-’ cos fcpo-$pcp1 sin f c p o )  
where 

p = (1 + 3h/ W;)”’ cpo = c0s-l A cpl = -B(1 -A2)-’/2 
with 
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Expressions for bo and co ( 6 ,  and c 1 )  can be obtained from (3.7) ( (3 .8))  by substituting 
cpo -+ cpo + 47r and cpo + cpo + 2.rr successively. Once a,  b and c are known to order x, 
the remaining quantities can also be written down in a similar form: 

2 2  k 2  = k i  + k:x a 2  = ao+a 1x g=go+g1x 

K =Ko+K1x E Eo+ E i x  n = no + n , x  

where 

and 

Putting these in (2.5) and rearranging terms, we get the following expression for x : 

x = N / D  (3.9) 
with 

(3.11) 

Our formula for W is defined by the relations (3.5),  (3.9), (3.10) and (3.11). These 
give an explicit analytic expression for the energy of any state labelled by the quantum 
numbers n and 1. For given n and 1, N and D can be evaluated easily using standard 
tables of elliptic integrals such as those of Belyakov er a1 (1965).  In connection with 
our formula the following points should be noted. First, the elliptic integrals and their 
derivatives are to be computed at values which are explicitly dependent on n and 1. 
It is this feature that accounts for the success of the method. Second, as WO is positive 
and as x is small by assumption, W given by (3.5) will be positive. Therefore the 
entire approximation procedure outlined above will be consistent and meaningful only 
if, for a given value of A ,  the actual energies of the system are positive. Since the 
potential V(r)  is not positive definite, it can give rise to negative-energy bound states 
(in addition to positive-energy ones) for sufficiently large A .  Hence the approximation 
procedure cannot be good for all values of A .  We may, however, expect it to work 
reasonably well provided A is such that there are no negative-energy bound states. 
A simple, natural way to ensure this is to require that the classical effective potential 
V,, = r - ( A / r )  +(I +;)' /r2 has a positive value at its minimum. For any given I, a 
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sufficient condition for the minimum of V,, to be positive is A <2(21+ l)4’3. It turns 
out that this condition provides a suitable criterion for determining the range of A 
values over which our approximate inversion works satisfactorily. 
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4. Results and discussion 

The energy values of several levels n ,  1 calculated from our approximate non- 
perturbative expression for a typical value of A = 0.1 are given in table 1. For 
comparison values of WWKB obtained by numerical solution of (2.5) are also given. 
The quantities We,,,, in this table are the actual eigenvalues of the Hamiltonian 
H = p 2 + r  - ( A / r )  taken from the work of Eichten et a1 (1978):. For A = 0.1 (a value 
well below the limit $(21+ 1)4’3 for all I) our approximation to W deviates by no 
more than 1% from WWKB in all cases, and provides values significantly closer to 
WWKB than those given by WO. One can further see from the table that WWKB itself 
is quite close to the exact eigenvalue even for the lowest levels. Our approximation 
can therefore be taken to provide reasonably good estimates of the actual energies. 
As noted in the previous section, our formula for the energy can be used with 
confidence for all levels as long as A is restricted to low values (A <0.75 for S states, 
A < 3 . 2 5  for P states, and so on). We observe that the restriction on A is really of 
importance only for the first few levels, since it is only these levels that can have 
negative energies when A is sufficiently large. This point is borne out by the results 
given in table 2 in which values of Wo(l + x )  and WWKB for various values of A are 
given for n = 0, 1 = 0 and n = 2, I = 0 levels. Comparing the difference between 
Wo(l + x )  and WWKB, we note that only for the ground state does the difference vary 
markedly with A. 

Table 1. Energy values for A = 0.1. 

n, 1 WO 

0 , o  2.320 
1 ,1  3.262 
3 , 1  4.826 
4 , 2  5.517 
6,O 6.784 
10,lO 9.021 
100,50 38.529 

2.275 
3.301 
4.842 
5.578 
6.752 
9.550 

39.213 

WWKB 

2.263 
3.314 
4.846 
5.598 
6.748 
9.539 

39.444 

2.253 
3.310 
4.843 
5.597 
6.746 

Finally, we make a few observations on the criterion of applicability of our 
approximation procedure. The limit on A is intended only to indicate roughly the 
value up to which the method could be expected to give good results, and is not an 
absolute limit. As the limit has been derived from classical considerations, one cannot 
conclude that values of A beyond the limit will necessarily result in the energies of 
the ground state (and its closest neighbours) becoming negative, although the ground- 
state energy will be negative if A is sufficiently large. Therefore we can say that, while 
the method can be expected to be quite satisfactory for A values lying well below the 

t These are obtained by numerical solution of the Schrodinger equation. 
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Table 2. A dependence of energy values for the lowest two S states. 

A 

0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.75 

- 

n = O , l  = O  n = 2 , l = O  

2.310 2.306 
2.275 2.263 
2.203 2.174 
2.127 2.083 
2.047 1.989 
1.964 1.893 
1.879 1.795 
1.747 1.644 

~~ 

4.067 
4.042 
3.991 
3.939 
3.886 
3.832 
3.778 
3.695 

4.065 
4.035 
3.974 
3.913 
3.851 
3.788 
3.725 
3.630 

Table 3. Energy values for A = 1.131 (charmonium case). 

WWKB 

090 1.396 1.234 1.256 
1, 1 2.822 2.753 2.752 
2 , o  3.481 3.381 3.390 
2,2 3.838 3.798 3.797 
391 4.486 4.406 4.405 
430 5.027 4.960 4.967 
4 ,2  5.305 5.249 5.248 

limit : ( 2 l +  1)4’3, the error in calculating the energies will increase progressively with 
increasing A, although the errors may not be unacceptably large for A values not much 
larger than the limiting value. As an illustration of this point, we quote in table 3 the 
energies calculated for A = 1.131. This value corresponds to one of the potentials 
used by Quigg and Rosner for fitting the charmonium levels (after a suitable scaling 
to bring their Hamiltonian to the form used in § 3). This value is above the S-state 
limit but below the P-state limit. As may be seen from the table, the error for the P 
states is much less than that for the corresponding S states. For comparison, we give 
the exact eigenvalues for the value A = 1.131, again from the work of Eichten et a1 
(1978). Our analytic expression can at best be taken to give a first approximation to 
the actual charmonium levels, since these levels are S and P states with low values 
of n.  
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